API Reference¶
The deepclaw library API consists of following parts:
-
Hardware Driver API
-
Arm
-
Hand
-
Camera
-
-
Modules Pool API
-
Segmentation
-
Recognition
-
Grasp Planning
-
Motion Planning
-
-
utils API
Hardware Driver API¶
The Hardware Driver API is used for controling the Hardware.
Arm¶
UR10e¶
class deepclaw.driver.arms.UR10eController(robot_configuration_file_path)
-
parameters[in]: robot_configuration_file_path, the robot configuration file, and the file format is yaml.
-
return: an instance of UR10e controller class
Methods
go_home()
Description: move to pre-defined joints, the home joints is defined in robot configuration file.
move_j(joints_angle, velocity=None, acceleration=None, solution_space='Joint')
Description: go to the target joints positions
param[in]:
- joints_angle: target joint positions of each joints [rad];
- velocity: joint acceleration of leading axis [rad/s];
- accelerate: joint speed of leading axis [rad/s^2];
- solution_space: move style, 'Joint' means it linear in joint-space(inverse kinematics is used to calculate the corresponding joints), and 'Space' means linear in tool-space
return: bool, reaching target or not
move_p(position, velocity=None, acceleration=None,solution_space='Joint')
Description: go to the target pose(Rotation vector)
param[in]:
- position: target pose;
- velocity: joint acceleration of leading axis [rad/s^2];
- accelerate: joint speed of leading axis [rad/s];
- solution_space: move style, 'Joint' means it linear in joint-space,and 'Space' means linear in tool-space(forward kinematics is used to calculate the corresponding pose)
return: bool, reaching target or not
get_state()
Description: get robot state
return: dictionary, the whole states of the UR10e
verify_state(variable_name, target_value, error=0.0001, time_out=10)
Description: verify the robot reaching the target pose(joint or cartesian) or not
param[in]:
- variable_name: target style, joints('q_actual') or cartesian('tool_vector_actual');
- target_value: target values;
- error: threshold,if the difference between current state and target state is small than threshold, we say the robot reached the target;
- time_out: Max time of the motion, [second]
return: bool, reaching target or not
Hand¶
HandE¶
class deepclaw.driver.grippers.handE_controller.HandEController(robot_ip = "192.168.1.10",port = 30003)
-
parameters[in]: robot_ip, the UR ip which the gripper mounted on; port, the UR ip.
-
return: an instance of gripper controller class
Methods
close_gripper()
Description: close the gripper.
open_gripper()
Description: open the gripper.
Camera¶
Realsense D435¶
class deepclaw.driver.sensors.cameras.Realsense(camera_configuration_file_path)
-
parameters[in]: camera_configuration_file_path, the camera configuration file, and the file format is yaml.
-
return: an instance of camera controller class
Methods
get_frame()
Description: get images from a camera.
return: a tuple, includes color image, depth image, point cloud, and infrared images.
get_intrinsics()
Description: get intrinsics attributes of a camera.
return: a tuple, intrinsics parameters of the camera
Modules Pool API¶
Calibration¶
deepclaw.modules.calibration.EyeOnBase.Calibration¶
class deepclaw.modules.calibration.EyeOnBase.Calibration(arm, camera, configuration_file)
Parameters
- arm
- camera
- configuration_file
Methods
- run(self): Calibrate robot arm and camera
End-to-End¶
deepclaw.modules.end2end.effecientdet.efficientdet_predictor.efficientdet¶
class deepclaw.modules.end2end.effecientdet.efficientdet_predictor.efficientdet(compound_coef=0, weight_path=None, num_classes=204)
Parameters
- compound_coef
- weight_path
- num_classes
Methods
Segmentation¶
deepclaw.modules.segmentation.ContourDetector.ContourDetector¶
class deepclaw.modules.segmentation.ContourDetector.ContourDetector(mode=cv2.RETR_LIST, method=cv2.CHAIN_APPROX_NONE, binary_threshold=127, area_threshold=(80, 200), with_angle=False)
Parameter
- mode
- method
- binary_threshold
- area_threshold
- with_angle
Methods
- run(self, color_image)